Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle.

نویسندگان

  • T A Zainal
  • T D Oberley
  • D B Allison
  • L I Szweda
  • R Weindruch
چکیده

In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We used immunogold electron microscopic (EM) techniques with antibodies raised against 4-hydroxy-2-nonenal (HNE) -modified proteins, dinitrophenol, and nitrotyrosine to quantify and localize the age-dependent accrual of oxidative damage in rhesus monkey vastus lateralis skeletal muscle. Using immunogold EM analysis of muscle from rhesus monkeys ranging in age from 2 to 34 years old, a fourfold maximal increase in levels of HNE-modified proteins was observed. Likewise, carbonyl levels increased approximately twofold with aging. Comparing 17- to 23-year-old normally fed to age-matched monkeys subjected to CR for 10 years, levels of HNE-modified proteins, carbonyls, and nitrotyrosine in skeletal muscle from the CR group were significantly less than control group values. Oxidative damage largely localized to myofibrils, with lesser labeling in other subcellular compartments. Accumulation of lipid peroxidation-derived aldehydes, such as malondialdehyde and 4-hydroxy-2-alkenals, and protein carbonyls were measured biochemically and confirmed the morphological data. Our study is the first to quantify morphologically and localize the age-dependent accrual of oxidative damage in mammalian skeletal muscle and to demonstrate that oxidative damage in primates is lowered by CR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age-associated miRNA Alterations in Skeletal Muscle from Rhesus Monkeys reversed by caloric restriction

The levels of microRNAs (miRNAs) are altered under different conditions such as cancer, senescence, and aging. Here, we have identified differentially expressed miRNAs in skeletal muscle from young and old rhesus monkeys using RNA sequencing. In old muscle, several miRNAs were upregulated, including miR-451, miR-144, miR-18a and miR-15a, while a few miRNAs were downregulated, including miR-181a...

متن کامل

In vitro oxidation of low-density lipoprotein in two species of nonhuman primates subjected to caloric restriction.

Caloric restriction (CR), which increases longevity and retards age-associated diseases in laboratory rodents, is being evaluated in nonhuman primate trials. CR reduces oxidative stress in rodents and appears to improve risk factors for cardiovascular disease in nonhuman primates. We tested the hypothesis that low-density lipoprotein (LDL) oxidizability is reduced in two monkey species (rhesus ...

متن کامل

Attenuation of sarcopenia by dietary restriction in rhesus monkeys.

Sarcopenia, the loss of muscle mass with normal aging, devastates quality of life-and related healthcare expenditures are enormous. The prevention or attenuation of sarcopenia would be an important medical advance. Dietary restriction (DR) is the only dietary intervention that consistently extends median and maximum life span, as well as health span in rodents. Evidence suggests that DR will ha...

متن کامل

Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart.

Mitochondria are chronically exposed to reactive oxygen intermediates. As a result, various tissues, including skeletal muscle and heart, are characterized by an age-associated increase in reactive oxidant-induced mitochondrial DNA (mtDNA) damage. It has been postulated that these alterations may result in a decline in the content and rate of production of ATP, which may affect tissue function,...

متن کامل

The thioredoxin system in aging muscle: key role of mitochondrial thioredoxin reductase in the protective effects of caloric restriction?

Cellular redox balance is maintained by various antioxidative systems. Among those is the thioredoxin system, consisting of thioredoxin, thioredoxin reductase, and NADPH. In the present study, we examined the effects of caloric restriction (2 mo) on the expression of the cytosolic and mitochondrial thioredoxin system in skeletal muscle and heart of senescent and young rats. Mitochondrial thiore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 14 12  شماره 

صفحات  -

تاریخ انتشار 2000